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Abstract—Situations that require deviation from the desired
path present a challenge for traditional path tracking controllers
because they are not given sufficient information about where
it is safe to deviate from the path. The controller presented in
this paper uses environmental information and a vehicle model
to ensure that, should deviations from the path be necessary to
avoid obstacles, the vehicle will deviate in a path that is safe. In
this paper, we propose a strategy for path tracking and obstacle
avoidance using Model Predictive Control.
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I. INTRODUCTION AND BACKGROUND

A number of new technologies are empowering mod-
ern vehicles like never before. Sensing technologies like
radar,cameras, and laser systems provide rich information
about the environment in real-time. Road surface friction
estimates and vehicle states can be made available in real-
time in vehicles equipped with steer-by-wire or power-steering
as demonstrated by Hsu et al. (2010). In addition, steer-by-
wire provides increased actuation capabilities. These new tech-
nologies have the potential to make cars much safer.Vehicles
traversing dynamic and static environments can be subjected to
many different types of obstacles. To avoid these obstacles, the
vehicle will need to swerve. The obstacle avoidance of these
vehicles, however, must also be safe. For this purpose, some
control algorithm must be applied to ensure that the vehicles
move safely around the obstacle and maneuver in safe regions.
The predictive nature and constraint handling capabilities of
Model Predictive Control (MPC) make it an attractive frame-
work for leveraging these new technologies.MPC is highly
popular as it yields higher performance control without expert
intervention for long periods of time [1]. Both Linear and
Non-Linear variants of MPC can be applied to any problem in
the autonomous driving scenario Kawabe et al. (2004) present
a receding horizon control framework that uses information
about the surrounding environment to generate optimal paths
to help guide a human driver.Falcone et al. (2007) present
a reduced computation MPC scheme for trajectory tracking
using active steering actuation.
In MPC [2] at each sampling time step, starting at the current
state, an open loop optimal control problem is solved over a
finite horizon.The optimal command signal is applied to the
process only during the following sampling interval. At the
next time step, a new optimal control problem based on new
measurements is solved over a shifted horizon. A dynamic
model of the process respects input and output constraints,
and minimizes a performance index.MPC is formulated in
the state space form and the system is a linear discrete
time model [3].Because of its capability of systematically
handling nonlinear time-varying models and constraints, and

operating close to the limits of admissible states and inputs,
Model Predictive Control (MPC) has been widely used to
address the autonomous vehicle guidance problem [12][16].
In [13],the MPC problem has been formulated as a quadratic
program (QP) by limiting the intervention to the steering, and
linearizing the vehicle dynamics around a constant vehicle
speed and small slip angles. In [14][16], the authors address
the problem of integrated braking and steering control by
using a hierarchical control architecture. A high-level con-
troller generates an obstacle-free trajectory, while a low level
controller tracks this planned trajectory. In order to combine
braking and steering, both levels implement a nonlinear MPC
formulation which requires the on-line solution of a non-
convex optimization problem. In order to reduce the real-time
computational complexity, in [12], the authors have proposed
the use of a spatial vehicle model which simplifies the problem.
However, the nonlinear nature of the model used in the MPC
problem significantly limits the maximum prediction horizon
implementable.
In this paper, we propose a linear MPC-based control archi-
tecture suitable for vehicles driving in low curvature roads,
such as highways. It addresses the lane keeping and obstacle
avoidance problems by combining steering and braking actions
[4]. Model Predictive Control have been used for speed control
and torsional vibration suspension [5], variable environment
for ecological driving [6], adaptive cruise control [7] and
vehicle stabilization [8].The MPC that is proposed here gives
a trajectory using position and velocity discrete model while
taking into consideration the stability and safety of the vehicle.
It is similar to [9] but the obstacles will be modeled as potential
field functions [10].
In Section II, we explain preliminaries design and assumptions
undertaken for this project.In Section III, we define the prob-
lem statement that is solved through our proposed solution.
Section IV gives an overview of the variables used in this
paper. Section V explains the methodology and our approach
used in this project. Section VI discusses the experiments that
we conducted both in simulation. It also shows the results
that was obtained and its significance to the work. Finally
in Section VII, we conclude by summarizing the project ac-
complishments, identifying potential problem areas and future
prospectives for the project.In Section VIII, the reachable goals
and desired goals are formulated and the achieved goals are
highlighted.

II. PRELIMINARIES AND ASSUMPTIONS

A. Vehicle Model

In this project, we assume the car is modeled as a 3DOF
bicycle. Due to this assumption for the remainder of this
project we will be using a bicycle model as the vehicle model.
Since we are testing this for roads with very little curvature,



the banking angle is assumed to be 0. We always keep the
rear steering angle to zero and take inputs as front steering
angle. There exists two approaches to model the vehicle as
a bicycle namely Kinematic Bicycle Model and Dynamics
Vehicle Model.
A detailed study of the various vehicle models and the con-
trollers used for autonomous vehicles has been conducted.Most
of published MPC schemes use dynamic vehicle model com-
bined with linear tire model [3]. This approach has two main
disadvantages: it is computationally expensive and any tire
model becomes singular at low vehicle speed. Tire models
use a tire slip angle estimation term which has the vehicle
velocity in the denominator. This prohibits the use of the same
control design for stop-and-go scenarios, common in urban
driving [3].The kinematic bicycle model, on the other hand,
is relatively similar to design and implement as it considers
only the front steering angle and the acceleration. In the
case of dynamic bicycle model, the tire slip angle and tire
cornering stiffness are also considered. Dynamic bicycle model
is primarily used in drastic road change conditions.Since most
of the real road conditions are based on nonlinear bicycle
model, we have done a comparison of the Kinematic Bicycle
Model and Dynamic Bicycle Model in this project.Moreover,
Model Predictive Control requires an analytical and accurate
dynamic mathematical model of the system to be controlled.
Our current implementation uses a nonlinear model of vehicle
dynamics to predict the future trajectory of system states.The
project further aims to develop the controller for obstacle
avoidance as well.

B. Controller Design

A simple trajectory tracking problem usually is well han-
dled with the use of LQR control. In this project , since we
plan to handle lane keeping as well as the obstacle avoidance
problem of a vehicle, we propose to use a Model Predictive
Controller. A very general architecture of a Model Predictive
Controller is given in Fig. 1. MPC controller contains three ba-
sic functional blocks. The Optimizer finds the optimal control
input u(t) which when applied to the plant, gives the minimum
value of the cost J. Of course, this optimization must be done
in the presence of the constraints and the cost function.The
State estimator is used to predict unmeasured states x̂(t) form
the plant.Model Predictive Control optimizes the output of a
plant over a finite horizon in an iterative manner as in Fig. 2.

Fig. 1: Model Predictive Control Architecture

Suppose the step size of the controller is T. At time
step k the current plant state is sampled and the optimizer
computes a cost minimizing control strategy u(t) for finite
time steps in future k = t + 0T, t + 1T,.....,t + pT where
p is the number of look ahead prediction horizon steps. In
practical situations, the whole optimal control sequence cannot
be applied to the process. This is due to the inaccurate process
model and added disturbances in the process which can cause
error between the predicted output and the actual process
output. If only a mathematical model was used for prediction
and state calculation, prediction errors could accumulate. Thus
only the first step of the control strategy is applied to the
plant and the plant state is measured again to be used as
the initial state for the next time step. This feedback of the
measurement information to the optimizer adds robustness to
the control.The plant state is sampled again and the whole
process is repeated again with the newly acquired states. The
prediction time window[t + 0T,t + 1T,.....,t + pT ] shifts forward
at every time step (reason why MPC is also known as Receding
Horizon Control).

C. Assumptions

• The environment around the vehicle is completely
observable.

• The environment currently has only static obstacles.

• Currently,the control input is steering angle.

• The lane banking is assumed as zero.

• The location of the obstacles in the environment is
known in advance.

III. FORMAL PROBLEM STATEMENT

In an autonomous vehicle, it can be useful to divide motion
control into path planning and path tracking. In this structure,
the path planner uses data from perception systems to generate
the desired path (desired positions and orientations) for the
vehicle to follow. The path tracker then calculates and applies
steering action to guide the vehicle along the path. This path
tracker is not effective in a real-world scenario, as it may
not have the sufficient perception information to handle the
changing road conditions. Even if a path planner has access to

Fig. 2: Model Predictive Control Scheme



this data, it is challenging to encode all information needed to
safely navigate the environment as a single path. If the path
cannot be perfectly tracked, a path-tracking controller should
possess information about where it is safe to deviate from the
path, such as within a lane, and where it is not next to another
vehicle. Tackling obstacle avoidance and lane keeping is the
problem addressed in this project.

IV. LIST OF VARIABLES

Fyr, Fyf = Force in the y direction on the rear,front wheel
N = Number of Prediction Horizons
m = Mass of the vehicle
ay = acceleration in y direction
Fbank = Banking force
y = y coordinates of center of mass
x = x coordinates of center of mass
φ = Yaw angle
Vx = Longitudinal Velocity
V = Velocity
Vxϕ̇ = Centripetal Acceleration
β = Slip angle
Ts = Time step
δf , δr = steering angle of front, rear wheel
η =reference trajectory
u = input
Cf , Cr = stiffness co-efficient front, rear
J = cost function
γ = Set of variables that J is dependent on

V. METHODOLOGY

In this project, a comparison between the kinematic and
dynamic bicycle model is done. The following sections elab-
orates the vehicle model and the controller implementation in
each case.

A. Kinematic Model

In this project we implement a car model as a Kinematic
bicycle model as shown in Fig. 3 and hence the equation for
the model can be written as,

ẋ = vcos(ψ + β) (1)
ẏ = vsin(ψ + β) (2)
v̇ = a (3)

ψ̇ =
v

lr
sinβ (4)

Fig. 4 shows the control architecture that will be imple-
mented in this project.

1) Discrete Time Linearized kinematic model: The model
constitutes the equations of motion of the vehicle, and has three
states (x, y, and ψ) and one input, the steering angle (δ), since
we assume a constant velocity. Discretized representation of
the kinematic bicycle model sampled at sampling time of Ts
gives

xk+1 = xk + Tsvkcos(ψk + βk) (5)
yk+1 = yk + Tsvksin(ψk + βk) (6)

ψk+1 = ψk + Ts
v

lr
sinβk (7)

where

βk = tan−1
( lr
lr + lf

tanδk−1

)
(8)

Linearizing the kinematic bicycle model, we form the
Jacobian for matrices A, B and evaluate them at time t = k
around the current state ψ = ψk, and current input δ = δk−1
(δk is to be determined at time k):

A =


1 0 −Tsvksin(ψk + βk)

0 1 Tsvkcos(ψk + βk)

0 0 1

 , or (9)

A =


1 0 −Tsvksin

(
ψk + tan−1(lqtanδk−1)

)
0 1 Tsvkcos

(
ψk + tan−1(lqtanδk−1)

)
0 0 1

 (10)

B =


−Tsvksin(ψk + βk)

lq
l2qsin

2δk−1 + cos2δk−1

Tsvkcos(ψk + βk)
lq

l2qsin
2δk−1 + cos2δk−1

Tsvk
lr

cos(βk)
lq

l2qsin
2δk−1 + cos2δk−1

 (11)

where lq =
lr

lr + lf

Now we can express the linear model as

zk+1 = Azk +Buk (12)

where

zk =

[
xk
yk
ψk

]
(13)

and

uk = δk (14)

2) Optimization problem: The optimization problem is
formulated at time t as follows:

minimize
N−1∑
k=0

(zk − zrefk )TQ(zk − zrefk ) + uTkRuk (15)

subject to zk+1 = Akzk +Bkuk (16)
δmin ≤ δk ≤ δmax (17)

zrefk = (xrefk , yrefk , ψrefk ) (18)
z0 = (xt, yt, ψt) (19)



where Ak or Bk are the Jacobian obtained via linearization
around the state of the vehicle at time t, in which case they
are constant across all k’s. (Ak = A, Bk = B, ∀k) and the
problem is solved for every time step [k + 0T,k + 1T,.....,k +
NT ].

3) Trajectory Generation: For testing the Model Predictive
Controller, we are implementing two trajectories: a) Straight
Line Trajectory and b) Circular Trajectory. In the Straight line
trajectory, the vehicle from any initial state has to track and
converge to the reference trajectory. The state of the vehicle at
each time step is calculated using the system dynamics and the
optimal control input obtained from the optimization problem
is applied at each prediction horizon to drive the system to
the final state. In the circular trajectory generation, a circle of
constant radius is the reference trajectory for the controller to
track. The steering angle to the vehicle is varied at each time
step ensuring the vehicle is along the track of the circle.

Fig. 3: Bicycle Model

Fig. 4: Control Architecture

B. Dynamic Model

The most important requirement for Model Predictive
Controller is the plant model. The optimizer uses this model
to predict the future behaviors of the plant and plans a safe
and optimal trajectory for the plant to follow. Linearized plant
models, which are an approximation of the non-linear models
can be easily implemented. In certain cases like non-holonomic
vehicles, these linearized models cannot accurately model the
highly dynamic nature of the plant. Hence, in order to capture
the dynamics of the plant accurately, we are implementing a
non-linear bicycle model to predict the future trajectory of the
system states.

In a bicycle model, front left and front right wheels are
joined together and represented by point A as shown in Fig. 3.
The rear left and rear right wheels are joined together and
represented as B. The Center of Gravity is represented by
point C. The distance CA is represented by lf , distance BC
is represented by lr and entire length of the vehicle is given
by l = lf + lr. The vehicle’s location is given in a X −
Y co-ordinate system. The steering angle is given by δf . It
is also assumed that co-efficient of friction between the tire
and road is small and the weight transfer function between
the front and the rear wheel is negligible which means that
the body roll and the pitch behavior of the vehicle can be
neglected. The orientation of the vehicle is given by ϕ in the
X − Y co-ordinate frame and it is measured with respect to
the global X co-ordinate frame. The velocity v of the vehicle
makes angle β with the longitudinal axis of the vehicle. β is
the vehicle slip angle. vx is the velocity of the vehicle along the
longitudinal axis and φ̇. Fy and Fr are the lateral forces along
the Y direction. Now, the lateral dynamics of the vehicle along
the Y direction can be derived by applying Newton’s Second
law of motion as follows.

may = Σ(forces acting along Y axis) (20)
may = 2Fyf + 2Fyr + Fbank (21)

We assume that the for due to the banking angle of the road
as zero.

Fbank = 0 (22)
may = 2Fyf + 2Fyr (23)

Now, lateral acceleration is given by:

ay = ÿ + vxψ̇ (24)

now, 2Fyf + 2Fyr = m(ÿ + vxψ̇) (25)

also, β =
ẏ

vx
(26)

hence, 2Fyf + 2Fyr = mVx(β̇ + ψ̇) (27)

so, β̇ =
2Fyf + 2Fyr

mVx
− ψ̇ (28)

The lateral dynamics of the vehicle is heavily dependent on
the tire properties. The driver’s input is directly proportional
to the primary forces acting on the vehicle due to braking,
accelerating and lateral maneuvers. We are incorporating a
widely used Pacejka tire model.

Fc = fc(α, s, µ, Fz) (29)
Fl = fl(α, s, µ, Fz) (30)

(31)

Here, Fc is the lateral tire force or cornering force and Fl is
the longitudinal tire force. These forces are complex functions
(fc, fl) of tire slip angle α, longitudinal slip ratio s, friction µ
and normal force Fz . On simplifying these equations, we get

Fyf = Cf (δf − (β +
lf ψ̇

vx
)) (32)

Fyr = Cr(−(β +
lf ψ̇

vx
)) (33)

(34)



The position and orientation of the vehicle can be determined
in X − Y co-ordinates using the following set of equations

ẋ = v cos(ψ + β) (35)
ẏ = v sin(ψ + β) (36)
ẋ = v cos(ψ) cos(β)− sin(β) sin(ψ) (37)
ẏ = v cos(ψ) sin(β) + cos(β) sin(ψ) (38)
vx = v cos(β) (39)
ẋ = vx cos(ψ)− vx tan(β) sin(ψ) (40)
ẏ = vx sin(ψ)− vx tan(β) cos(ψ) (41)

1) Discretization of the System: On-line implementation
of Model Predictive Control requires the equations to be in
a discretized manner since the controller has to evaluate the
model hundreds of times while tracking the trajectory. We are
using Euler’s forward method for discretization our model.
Here, ζ represents the system in the continuous time.

ζ̇(t) = fcont(ζ(t), u(t)) (42)

⇒ ζ(tk+1)− ζ(tk)

Ts
≈ fcont(ζ(t), u(t)) (43)

⇒ ζ(tk+1) ≈ ζ(tk) + Tsfcont(ζ(t), u(t)) (44)

Using the above method shown in Eqs. (42) to (44), we can
write the discretization of each states as,

β(k + 1) = β(k) + Ts

[ 2Cf
mvx

[
δf (k)− β(k)− lf ψ̇(k)

vx

]
+

2Cr
mvx

[
− β(k) +

lrψ̇(k)

vx

]
− ψ̇(k)

]
(45)

ψ(k + 1) = ψ(k) + Tsψ(k) (46)

ψ̇(k + 1) = ψ(k) + Ts

[2lfCf
Iz

[
δf (k)− β(k)− lf ψ̇(k)

vx

]
− 2lrCr

Iz

[
− β(k) +

lrψ̇(k)

vx

]]
(47)

X(k + 1) = X(k) + Ts
[
vx cos(ψ(k))− vx tan(β(k))

sin(ψ(k))
]

(48)

Y (k + 1) = Y (k) + Ts
[
vx sin(ψ(k)) + vx tan(β(k))

cos(ψ(k))
]

(49)

Eqs. (45) to (49) represents the discretized model of the
system.

2) MPC Formulation :

Objective Function: We define a generic cost function
for generating trajectories which are inside the lane and also

helps the vehicle to avoid obstacles as follows:

J = f(γ) (50)

J =
1

2
ηTNQ0ηN +

N−1∑
K=0

(1

2
η̄TNQη̄N + ζTk Sζk + uTkRuk

)
(51)

1
2η
T
NQ0ηN is the terminal cost function and penalizes the

trajectory deviation at the last time step (k = N) of look-ahead
horizon. The running cost penalizes the trajectory deviation
at each time step (k = (1, 2, ....N − 1)) during the entire
horizon.The matrices P,Q,R and S are the penalty weighing
matrices. The matrices Q0(2x2) and Q(2x2) penalize the ter-
minal trajectory deviation and the running trajectory deviation
respectively[10]. The matrices S(5x5) and R(1x1) penalize
the large state values and the large input values. All the penalty
weighing matrices are diagonal matrices[10].

Constraints: A simple method of implementing con-
straints is by projecting the candidate input u∗k on the constraint
set as per Eq. (52).

uk,min ≤ u∗k ≤ uk,max u = δf (steering angle) (52)

Also in order to ensure that the car deviates from the
obstacle but not too far away is by imposing the constraint
on the lateral position error as per Eq. (53).

lateral displacement error ≤ 1

2
lane width (53)

MPC Optimization: Minimization of the cost function
as defined by Eq. (51) is done by one of the traditional method
called Gradient descent algorithm.

• Start with the initial guess of u for the initial state ζ0.

• Find slope dJ
dγ .

• Take step ∆ along negative slope.

• Repeat until dJ
dγ = 0.

By the end of the Gradient Descent algorithm, we are
expecting to obtain the optimal control input which drives the
vehicle along the lane avoiding the obstacle.

C. Obstacle Avoidance Problem

1) Obstacle Modeling: The obstacles are considered as
static point obstacles or geometric obstacles. Different method-
ologies were tried out to incorporate the obstacle in the
environment, into the cost function using YALMIP library and
fmincon function.

• Brute Force

• Potential Field Function

• Gaussian Function

In paper [10], the obstacle avoidance strategy is handled as
per Fig. 5. At each time step dk is calculated as a point, which
lies on straight lines from vehicle CG to the reference line and
selecting the one which is closer to the goal point. When the
vehicle is at point ηk,1, two points are found on the reference



line corresponding to this point ηk,1,X and ηd,k,1,Y , which are
calculated by a horizontal and a vertical line from the vehicle
CG to the reference line. But only point ηk,1,X is considered
to be the desired point ηd,k,1 because it is closer to the goal
point. Thus the reference trajectory criterion has considered
the approach to the goal point rather than just following the
trajectory in any direction. Similarly when the vehicle is at
point ηk,2, only ηk,2,Y is considered the desired point ηk,2
due to its proximity to the goal point [10].

In this project, we have utilized a similar approach but
instead moving about the obstacle in a triangular path, we have
implemented the same using trapezoidal path. This reduces
the sharp changes in the steering angle when compared to the
triangular path approach.

2) Cost Functions for Obstacle Representation:

Brute Force: In this naive method, the states are con-
strained (bounded) within the obstacle-free space. Whenever
the vehicle moves closer to obstacle in the x-axis, the constraint
in the y-axis is given less weightage enabling the vehicle
to deviate from the obstacle as well as from the reference
trajectory. The constraints are defined as per the Eq. (54).

x ≤ (xobs − ε) and x ≥ (xobs + ε) (54)

where (x, y) is the current location of the vehicle and
(xobs, yobs) is the location of the obstacle to be avoided. ε
is a small positive number for defining boundary around the
obstacle. The limitation involved in this method is the drastic
change in the steering angle when the system approaches the
obstacle.This limitation can be observed in Fig. 21.

Potential Field Function: In this method, a repulsive
potential field around the obstacle is created which is computed
based on the current location of the vehicle. The function Pk in
Eq. (55) is used to compute the potential field for the vehicle’s
current location.

Pk =
1

(x− xobs)2 + (y − yobs)2 + ε
(55)

where (x, y) is the current location of the vehicle and
(xobs, yobs) is the location of the obstacle to be avoided. ε
is a small positive number for non singularity. The advantage
with such simple function is that it is easily differentiable and
does not lead to complex differential terms in the optimization
part [10].

Gaussian Function: This method is similar to potential
field function approach. Here, a Gaussian distribution N0 is
created with the peak value at the obstacle’s location.

N0 =
1√

2πσ2
exp

{
− (Z − Zobs)2

2σ2

}
(56)

where, Z = [x, y], Zobs = [xobs, yobs], σ = 4X4 matrix.
The advantage of using this method is that we can manipulate
how close the car can move towards the obstacle by changing
the covariance matrix. Fig. 14 in appendix A shows the cost
map generated by Eq. (56).

The above two methodologies couldn’t be implemented
effectively because of the limitations in the YALMIP library
and optimization solver used.

Fig. 5: Obstacle Modeling

VI. RESULTS AND DISCUSSIONS

A. Kinematic Bicycle Model

In this section, the trajectory tracking behavior of the MPC
for straight line and circular trajectory is explained. The control
algorithms were initially implemented using fmincon function
of Matlab.The results were not satisfactory and were varying
with different initial guesses for state. Hence we have chosen
YALMIP optimization library implemented in Matlab for our
experiments [11].Appendix A contains the figures and plots
relevant to this section.

Constant Velocity:

Following sections discusses the results obtained for the con-
stant velocity and the steering angle as the only the control
input.

1) Straight Line Trajectory Tracking: The initial conditions
for the experiments were [x,y,ψ]=[2 m, -2 m, pi/2 rad]. The
constant velocity is fixed to be 1 m/s. The parameters in
Tables I and II were fixed for the respective experiments.

Two experiments were conducted for tracking the straight
line with two different horizons first with 20 time steps and
second with 30 time steps. The red line in the trajectory
represents the path of the vehicle and the blue line represents
the desired trajectory. On observing the Figs. 6 and 7 we can
say that the trajectory tracking performance is improved for
horizon with 30 time steps when compared to horizon with 20

TABLE I: Parameter Table for Experiment 1

Parameters Values
Ts (sampling time) 0.01

Q [1 0 0; 0 1 0; 0 0 1]
R [1]
N 20

Number of states 3
Number of inputs 1

Constraint on steering angle δ ∈ [−60, 60]
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Fig. 6: Experiment 1-Tracking Straight Line for N = 20

TABLE II: Parameter Table for Experiment 2

Parameters Values
Ts (sampling time) 0.01

Q [1 0 0; 0 1 0; 0 0 1]
R [1]
N 30

Number of states 3
Number of inputs 1

Constraint on steering angle δ ∈ [−60, 60]

time steps. On observing the deviations in the Figs. 15 and 17 it
is evident that designed controller is giving the optimal control
action to track the trajectory. The Figs. 16 and 18 represents
the optimal steering angle given to propagate the system. Since
the initial orientation of the vehicle is set as pi/2 , we observe a
steady variation in optimal steering angle as there is continuous
optimization for the x , y and ψ of the vehicle at each time
step.

2) Circular Trajectory Tracking: The initial conditions
for the experiments were [x,y,ψ]=[1.5 m,0 m,pi/2 rad]. The
constant velocity is fixed to 1m/s. The parameters in Table III
were fixed for this experiment.

In order to track the circular trajectory, the point on the
desired trajectory nearest to the start point is chosen as the
reference point for the first horizon. Thereafter, the state
updation and control input optimization for each prediction
horizon is updated at each time step based on the previous
control input.The circular trajectory tracking is performed by
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Fig. 7: Experiment 2-Tracking Straight Line for N = 30

TABLE III: Parameter Table for Experiment 3

Parameters Values
Radius of circle 1.5
Ts (sampling time) 0.01

Q [1 0 0; 0 1 0; 0 0 1]
R [1]
N 10

Number of states 3
Number of inputs 1

Constraint on steering angle δ ∈ [−60, 60]
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Fig. 8: Experiment 3-Tracking circular trajectory for N = 10

constraining the control input within the limits as shown in
Table III. On observing Fig. 19 it can be seen that there is a
slight deviation from the desired trajectory along the curvature
of the circle. This is due to the fact that the angular velocity of
the vehicle is limited to ensure the stability of the vehicle and
prevent toppling. This prohibits vehicle trajectory to take steep
turns along the curvature while tracking the desired trajectory.

Variable Velocity:

Following sections discusses the results obtained when both
velocity and steering angle are the control inputs.

3) Circular Trajectory Tracking: The initial conditions of
the experiments were [x,y,ψ,v]=[0 m,1.6 m,pi rad, 1 m/s].The
parameters in Table IV were fixed for this experiment.

Disturbance Rejection Nature of MPC:

A random noise is introduced as a disturbance to the vehi-
cle model. The MPC is modeled to reject this disturbance
introduced in the vehicle states. The MPC controller rejects
these disturbance rather than propagating them at each horizon.

TABLE IV: Parameter Table for Experiment 4

Parameters Values
Ts (sampling time) 0.01

Q [20 0 0 0; 0 20 0 0; 0 0 20 0; 0 0 0 30]
R [0.01 0;0 0.01]
N 30

Number of states 4
Number of inputs 2

Constraint on steering angle δ ∈ [−60, 60]
Constraint on velocity v ∈ [0, 2 reference velocity]
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Fig. 9: Experiment 4-Tracking Circular trajectory with velocity
as an control input

0 2 4 6 8 10

-3

-2

-1

0

1

2

3

trajectory

Fig. 10: Overall disturbance rejection performance V=4m/s
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Fig. 11: Overall disturbance rejection performance V=1m/s

Comparing Fig. 10 and Fig. 11 we can see that there is a
deviation from the path when the velocity is 1 m/s whereas,
the trajectory is followed accurately for velocity = 4 m/s. This
is because the velocity of 1 m/s is not enough to converge in
one time-step and the noise makes a difference in the amount
of distance travelled in a time step. For velocity=4 m/s the
distance to converge to trajectory is easily covered in one time-
step and hence there is no deviation from the desired trajectory.

Smoothing of control input:

Until now we have seen much deviation in steering angle
inputs as in Figs. 16, 18 and 20. This is undesirable. We
have introduced an extra term in the cost function to smooth
this input. The term added is (uk − uk−1)Rc(uk − uk−1)T .
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Fig. 12: Smoothing of input

Fig. 13: Experiment 5-Avoiding Obstacle using MPC

Fig. 12 shows the effects of smoothing.This makes the MPC
implementation possible in real-time vehicle.

Obstacle Avoidance:

The initial conditions of the experiments were [x,y,ψ]=[0
m,0 m,0 rad].The parameters in Table V were fixed for this
experiment. Figs. 13 and 21 shows the obstacle avoided by the
controller and the control input (steering angle) generated by
the controller.

TABLE V: Parameter Table for Experiment 5

Parameters Values
Ts (sampling time) 0.01

Q [1 0 0 ; 0 1 0 ; 0 0 1]
R [1]
N 30

Number of states 3
Number of inputs 1

Constraint on steering angle δ ∈ [−60, 60]



VII. CONCLUSION AND FUTURE WORK

In this project,we have presented a kinematic bicycle model
of the vehicle dynamics,and used it to formulate an MPC
problem for obstacle avoidance and trajectory tracking. The
non-linear model is linearized using Jacobian linearization and
a linearized system model is used as the plant. The linearity
of the model and convexity of the constraints is used to cast
the MPC problem as Quadratic Programming problem.The
YALMIP library integrated with MATLAB is used as the tool
to implement this project. The optimization solver used in
Quadratic Programming solver which is in-built in YALMIP.
Preliminary results demonstrate smooth integration of the
controller showing promise of this control scheme on real-time
implementations. The main advantage of the Model Predictive
Control(MPC) being able to incorporate safety constraints dur-
ing real time and its adaptive disturbance rejection capability is
verified through this project results. The additional constraint
on the steering rate smoothen the variation in steering angle
which qualifies the controller to be tested real-time.The model-
ing of the obstacle as Gaussian functions and defining a safety
envelope around the obstacle works well in simulation. The
real time implementation of this obstacle avoidance algorithm
is still a question as the obstacles considered in this project
as static and the location of the obstacles and known in
prior.In this project, we also made an attempt to implement
the dynamic bicycle model. The main issue with the dynamic
bicycle model is the unknown inertia parameter which has
to be estimated in real time. The parameter estimation can
be performed by using a more robust control approach, like
Robust MPC or Adaptive MPC. The dynamic bicycle model is
more alike the real-time car model hence MPC implemented
in dynamic bicycle model would definitely yield a better
performance close to real world.
Future work focuses on incorporation of moving obstacles and
methodologies to leverage brake actuation and variable speed.
A more practical approach to on-line obstacle avoidance need
to be developed in the future.

VIII. GOALS

By the end of this project,we were able to accomplish the
Reachable Goals listed below. The desired goals can be carried
out as a future work.

A. Reachable Goals

• To implement a trajectory tracking controller that can
follow any given set of trajectory points.

• Use the environmental information and vehicle model
to implement a Model Predictive Control that can
deviate from the desired path along with maintaining
the stability of the vehicle and also avoid obstacles
such that vehicle is within the lane.

B. Desired Goals

• Implementing a Model Predictive Control for path
tracking in roads having high curvatures.

• Design a safe environment envelopes which are a
convex set of points namely tubes, that are free of
obstacles and are within road boundaries.

• Implementation of developed MPC on the F1 tenth
race car.
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IX. APPENDIX A

Fig. 14: Cost map generated using Gaussian Function
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Fig. 15: Tracking Straight Line for N = 30 along with orientation and distance deviation
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Fig. 16: Steering Angle (optimized control action) for N=30
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Fig. 17: Tracking Straight Line for N = 20 along with orientation and distance deviation
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Fig. 18: Steering Angle (optimized control action) for N=20
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Fig. 19: Tracking circular trajectory for N = 10 along with orientation and distance deviation
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Fig. 20: Steering Angle (optimized control action) for N=10
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Fig. 21: Steering angle: Avoiding obstacle using Brute Force method
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Fig. 22: Tracking circular trajectory with velocity as control input
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Fig. 23: Details for Disturbance Rejection V=4m/s
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Fig. 24: steering parameters and disturbance rejection V=4m/s
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Fig. 25: Disturbance for Disturbance Rejection V=4m/s
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Fig. 26: Details for Disturbance Rejection V=1m/s
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Fig. 27: steering parameters and disturbance rejection V=1m/s
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